46 research outputs found

    Gold mineralisation in the Caledonides of the British Isles with special reference to the Dolgellau Gold-belt, North Wales and the Southern Uplands, Scotland. Available in 2 volumes.

    Get PDF
    Two aspects of gold mineralisation in the Caledonides of the British Isles have been investigated: gold-telluride mineralisation at Clogau Mine, North Wales; and placer gold mineralisation in the Southern Uplands, Scotland. The primary ore assemblage at Clogau Mine is pyrite, arsenopyrite, cobaltite, pyrrhotine, chalcopyrite, galena, tellurbismuth, tetradymite, altaite, hessite, native gold, wehrlite, hedleyite, native bismuth, bismuthunite and various sulphosalts. The generalised paragenesis is early Fe, Co, Cu, As and S species, and later minerals of Pb, Bi, Ag, Au, Te, Sb. Electron probe micro-analysis (EPMA) of complex telluride-sulphide intergrowths suggests that these intergrowths formed by co-crystallisation/replacement processes and not exsolution. Minor element chemical variation, in the sulphides and tellurides, indicates that antimony and cadmium are preferentially partitioned into telluride minerals. Mineral stability diagrams suggest that during gold deposition log bf aTe2 was between -7.9 and -9.7 and log bf aS2 between -12.4 and -13.8. Co-existing mineral assemblages indicate that the final stages of telluride mineralisation were between c. 250 - 275oC. It is suggested that the high-grade telluride ore shoot was the result of remobilisation of Au, Bi, Ag and Te from low grade mineralisation elsewhere within the vein system, and that gold deposition was brought about by destabilisation of gold chloride complexes by interaction with graphite, sulphides and tellurbismuth. Scanning electron microscopy of planer gold grains from the Southern Uplands, Scotland, indicates that detailed studies on the morphology of placer gold can be used to elucidate the history of gold in the placer environment. In total 18 different morphological characteristics were identified. These were divided on an empirical basis, using the relative degree of mechanical attrition, into proximal and distal characteristics. One morphological characteristic (a porous/spongy surface at high magnification) is considered to be chemical in origin and represent the growth of `new' gold in the placer environment. The geographical distribution of morphological characteristics has been examined and suggests that proximal placer gold is spatially associated with the Loch Doon, Cairsphairn and Fleet granitoids. Quantitative EPMA of the placer gold reveals two compositional populations of placer gold. Examination of the geographical distribution of fineness suggests a loose spatial association between granitoids and low fineness placer gold. Also identified was chemically heterogeneous placer gold. EPMA studies of these heterogeneities allowed estimation of annealing history limits, which suggest that the heterogeneities formed between 150 and 235oC. It is concluded, on the basis of relationships between morphology and composition, that there are two types of placer gold in the Southern Uplands: (i) placer gold which is directly inherited from a hypogene source probably spatially associated with granitoids; and (ii) placer gold that has formed during supergene processes

    Active geothermal systems with entrained seawater as analogues for low-sulphidation epithermal mineralization

    Get PDF
    The paradigm for low-sulphidation (LS) volcanic-arc associated mineralization is the active geothermal systems located along the Taupo Volcanic Zone (e.g. Broadlands). However, this analogue is inapt where fluid salinities are consistently in excess of 3.5 wt % NaCl. LS mineralization on Milos (Aegean arc) records high paleofluid-salinities. The δD and δ18O data do not exemplify 18O-shifted meteoric waters—typical of terrestrial geothermal systems. Nor is a submarine origin indicated—stable isotope data show mixing between meteoric, seawater and volcanic-arc gases. Strontium isotope data are comparable to a nearby active seawater-entrained geothermal system. These are features seen in hydrothermal systems associated with emergent volcanoes. For the Milos LS mineralization, high-salinity fluids show it cannot be explained by a Broadlands-type model. The absence of saliferous sequences and significant intrusive rocks preclude these as salinity sources. The similarities between paleo and active systems in terms of salinity, δD–δ18O and strontium isotope systematics strongly suggest that seawater is the main source for Na and Cl. We suggest geothermal systems, containing seawater, associated with emergent volcanoes are an alternative analogue for LS epithermal mineralization. Furthermore, they bridge the gap between submarine, and large-scale terrestrial geothermal systems—the modern analogues for VHMS and epithermal mineralisation in the scheme of intrusion-centered hydrothermal mineralization

    Do fluid inclusions preserve δ18O values of hydrothermal fluids in epithermal systems over geological time? : evidence from paleo- and modern geothermal systems, Milos island, Aegean Sea

    Get PDF
    Stable isotope compositions of quartz (δ18Oquartz) and fluid inclusion waters (δ18OFI and δDFI) were analysed from Profitis Ilias, a low-sulphidation epithermal gold mineralisation deposit on Milos island Greece, to establish if δ18OFI preserve a record of paleo-geothermal processes. Previous studies show that mineralisation at Profitis Ilias resulted from extreme boiling and vaporisation and a zone located at approximately 430 m asl represents the transition between a liquid- and vapour-dominated system [Mineral. Dep. 36 (2001) 43]. The deposit is also closely associated with an active geothermal system, whose waters have a well-characterised stable isotope geochemistry [Pagel and Leroy (1991) Source, transport and deposition of metals. Balkema, Rotterdam, 107–112]. The samples were collected over an elevation interval of 440 m (210 to 650 m asl) to give information on the liquid- and vapour-segments of the paleo-system. The data show systematic variations with sample elevation. Samples from the highest elevations (c. 650 m asl) have the lightest δ18OFI (–7.3 ‰) and δDFI (–68.0 ‰) whilst the deepest (c. 210 m asl) are isotopically heavier (δ18OFI –3.7 ‰; δDFI –19.0 ‰). Relative changes in δ18OFI closely parallel those in δDFI. δ18Oquartz shows an opposite trend, from the lightest values (+13.9 ‰) at the lowest elevations to the heaviest (+15.1 ‰) at the highest. δ18OFI show correlations with other parameters. For example, variable fluid inclusion homogenisation temperatures in the vapour-dominated part of the system, correlate with a rapid shift in δDFI (–33.3 to –50.5 ‰) and δ18OFI (–4.1 to –6.2 ‰) and gold contents also increase in the same zone (up to 50 ppm). Comparable correlations in δ18Oquartz or δ18Ocalculated (estimated geothermal fluid from fluid inclusion homogenisation data) are absent. δ18Ocalculated are always 5 to 10 ‰ heavier than δ18OFI. Comparison with the modern geothermal system shows that δDFI–δ18OFI are similar. Isotope data for the modern system and fluid inclusion waters fall on linear trends sub-paralleling the meteoric water line and project towards seawater values. Numerical modelling favours kinetically controlled fractionation to explain differences in δ18Ocalculated and δ18Ofluid rather than diffusive post-trapping equilibration. The evidence suggests, that in low-temperature epithermal systems, δ18OFI may represent a better record of fluid process and the isotopic composition of the geothermal fluid than temperature-corrected quartz data

    The impact of vegetation on lithological mapping using airborne multispectral data: a case study for the North Troodos Region, Cyprus

    Get PDF
    Vegetation cover can affect the lithological mapping capability of space- and airborne instruments because it obscures the spectral signatures of the underlying geological substrate. Despite being widely accepted as a hindrance, few studies have explicitly demonstrated the impact vegetation can have on remote lithological mapping. Accordingly, this study comprehensively elucidates the impact of vegetation on the lithological mapping capability of airborne multispectral data in the Troodos region, Cyprus. Synthetic spectral mixtures were first used to quantify the potential impact vegetation cover might have on spectral recognition and remote mapping of different rock types. The modeled effects of green grass were apparent in the spectra of low albedo lithologies for 30%–40% fractional cover, compared to just 20% for dry grass cover. Lichen was found to obscure the spectra for 30%–50% cover, depending on the spectral contrast between bare rock and lichen cover. The subsequent impact of vegetation on the remote mapping capability is elucidated by considering the outcomes of three airborne multispectral lithological classifications alongside the spectral mixing analysis and field observations. Vegetation abundance was found to be the primary control on the inability to classify large proportions of pixels in the imagery. Matched Filtering outperformed direct spectral matching algorithms owing to its ability to partially unmix pixel spectra with vegetation abundance above the modeled limits. This study highlights that despite the limited spectral sampling and resolution of the sensor and dense, ubiquitous vegetation cover, useful lithological information can be extracted using an appropriate algorithm. Furthermore, the findings of this case study provide a useful insight to the potential capabilities and challenges faced when utilizing comparable sensors (e.g., Landsat 8, Sentinel-2, WorldView-3) to map similar types of terrain

    European mineral statistics 2002-06 : a product of the World Mineral Statistics database

    Get PDF
    European Mineral Statistics has over 300 pages of tables on minerals production and trade. Thirty two countries are covered including all the EU members, EU applicants, Norway and Switzerland. In the first section there are tables by country, followed by commodity tables with selected graphics and bullet points with information on use and prices

    Lithological mapping of the Troodos ophiolite, Cyprus, using airborne LiDAR topographic data

    Get PDF
    Traditional field-based lithological mapping can be a time-consuming, costly and challenging endeavour when large areas need to be investigated, where terrain is remote and difficult to access and where the geology is highly variable over short distances. Consequently, rock units are often mapped at coarse-scales, resulting in lithological maps that have generalised contacts which in many cases are inaccurately located. Remote sensing data, such as aerial photographs and satellite imagery are commonly incorporated into geological mapping programmes to obtain geological information that is best revealed by overhead perspectives. However, spatial and spectral limitations of the imagery and dense vegetation cover can limit the utility of traditional remote sensing products. The advent of Airborne Light Detection And Ranging (LiDAR) as a remote sensing tool offers the potential to provide a novel solution to these problems because accurate and high-resolution topographic data can be acquired in either forested or non-forested terrain, allowing discrimination of individual rock types that typically have distinct topographic characteristics. This study assesses the efficacy of airborne LiDAR as a tool for detailed lithological mapping in the upper section of the Troodos ophiolite, Cyprus. Morphometric variables (including slope, curvature and surface roughness) were derived from a 4 m digital terrain model in order to quantify the topographic characteristics of four principal lithologies found in the area. An artificial neural network (the Kohonen Self-Organizing Map) was then employed to classify the lithological units based upon these variables. The algorithm presented here was used to generate a detailed lithological map which defines lithological contacts much more accurately than the best existing geological map. In addition, a separate map of classification uncertainty highlights potential follow-up targets for ground-based verification. The results of this study demonstrate the significant potential of airborne LiDAR for lithological discrimination and rapid generation of detailed lithological maps, as a contribution to conventional geological mapping programmes

    Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems

    Get PDF
    Epithermal gold mineralisation is found in a wide compositional range of host lithologies, but despite the diversity the alteration mineral assemblages are often similar between deposits. Notable exceptions are those gold deposits hosted in alkaline host rocks. Alkaline-hosted epithermal deposits are rare, but important, as they include some of the world’s largest known epithermal deposits by contained metal (e.g. Ladolam, Cripple Creek, Porgera). As well as the exceptional gold contents, the alkaline-hosted systems tend to exhibit different alteration mineral assemblages, with less quartz and widespread silicification than sub-alkaline-hosted equivalents, and greater enrichments in tellurium, and a scarcity of acid alteration (advanced argillic) types. In this study, geochemical modelling is used to demonstrate that 300 °C hydrothermal fluids in equilibrium with alkali, silica-undersaturated host rocks at low water/rock ratios reach significantly higher pH than equivalents in sub-alkaline lithologies. A maximum, near-neutral pH (5.5–6) is buffered by reactions involving quartz in silica-saturated alkaline and calc-alkaline lithologies. In silica-undersaturated, alkaline host rocks, quartz is exhausted by progressive water-rock interaction, and pH increases to 7 and above. Both tellurium and gold solubility are favoured by neutral to high fluid pH, and thus there is a clear mechanism within these hydrothermal systems that can lead to effective transport and concentration to produce gold telluride ore deposits in alkaline igneous hosts. This modelling demonstrates that alkaline rocks can still be altered to advanced argillic assemblages; the paucity of this alteration type in alkaline hosts instead points to NaCl ≫ HCl in magmatic volatile phases at the initiation of hydrothermal alteration

    Source controls on mineralisation: regional geology and magmatic evolution of Fiji

    Get PDF
    There is a well-established link between world-class gold telluride mineral deposits and alkalic magmatic host rocks, often emplaced post-subduction in arc terranes. Fiji is home to two such deposits, and provides an ideal location to study the relationship between the alkalic (shoshonitic) host rocks, their geodynamic context, and potential roles in metal enrichment. A total of 93 new geochemical analyses of magmatic rocks from across Fiji are presented, alongside detailed petrography and mineralogy and a new compilation of literature data. Despite relatively similar mineralogy across syn- and post-subduction samples, there are geochemical differences between them, with the latter displaying elevated concentrations of Ba (<2137 ppm), Rb (<218 ppm), Sr (<2648 ppm) and K2O (<10.18 wt%), and depletions in Nb and Ta. Multi-element trends suggest exaggerations of ‘typical’ arc patterns in post-subduction shoshonites. Geochemical data suggest that whilst the fluxing of fluids and sediment melts from a subducted slab may play a role in producing the distinctive post-subduction magmas, they are likely insufficient to drive such strong trends. Instead, biotite or possibly phlogopite in the lithosphere are suggested as being a key ‘ingredient’. Earlier subduction can modify the lithosphere through the addition of hydrous phases, both by metasomatism of the lithospheric mantle, or by the formation of residual minerals during fractional crystallisation. Remelting of these phases could liberate trace elements and metals. Biotite in particular could facilitate some of the observed large ion lithophile elements (LILE) enrichments and the alkali-rich (potassic) nature of the magmas

    Precipitation of Mn Oxides in Quaternary microbially induced sedimentary structures (MISS), Cape Vani Paleo-Hydrothermal Vent Field, Milos, Greece

    Get PDF
    Understanding microbial mediation in sediment-hosted Mn deposition has gained importance in low-temperature ore genesis research. Here we report Mn oxide ores dominated by todorokite, vernadite, hollandite, and manjiroite, which cement Quaternary microbially induced sedimentary structures (MISS) developed along bedding planes of shallow-marine to tidal-flat volcaniclastic sandstones/sandy tuffs, Cape Vani paleo-hydrothermal vent field, Milos, Greece. This work aims to decipher the link between biological Mn oxide formation, low-T hydrothermalism, and, growth and preservation of Mn-bearing MISS (MnMISS). Geobiological processes, identified by microtexture petrography, scanning and transmission electron microscopy, lipid biomarkers, bulk- and lipid-specific δ13Corganic composition, and field data, and, low-temperature hydrothermal venting of aqueous Mn2+ in sunlit shallow waters, cooperatively enabled microbially-mediated Mn (II) oxidation and biomineralization. The MnMISS biomarker content and δ13Corg signatures strongly resemble those of modern Mn-rich hydrothermal sediments, Milos coast. Biogenic and syngenetic Mn oxide precipitation established by electron paramagnetic resonance (EPR) spectroscopy and petrography, combined with hydrothermal fluid flow-induced pre-burial curing/diagenesis, may account for today’s crystalline Mn oxide resource. Our data suggests that MISS are not unique to cyanobacteria mats. Furthermore, microbial mats inhabited by aerobic methanotrophs may have contributed significantly to the formation of the MnMISS, thus widening the spectrum of environments responsible for marine Mn biometallogenesi

    Mineralogical constraints on the genesis of an alkalic-type epithermal Au-Te deposit: Tuvatu, Fiji

    Get PDF
    To study the characteristics and genetic constraints on alkalic-type epithermal Au mineralisation, here we use the example of the Tuvatu Au-Ag deposit in Fiji, with an emphasis on detailed, quantitative mineralogy. Tuvatu mineralisation is hosted in a weakly altered potassic monzonite in parallel sided-veins of K-feldspar, biotite, sericite, calcite, and quartz, with epidote-bearing propylitic or sericite-rich selvages. Petrographic study of core and automated SEM-based mineralogical mapping of thin sections have been utilised to update previous parageneses of the deposit. Automated SEM techniques enable identification of small amounts of obscure minerals that form minuscule grains, which would otherwise be very difficult to identify and measure. As a result, our data show that gold fineness is extremely high, with the mean and median Au content of native-Au and Au-Ag alloy being 96.7% and 100% respectively, yet precious-metal tellurides make up the majority of the Au deportment. Tellurides show evidence of multiple phases and zoning with depth. For the first time at Tuvatu, Pt- and Pd-tellurides have been identified. Tuvatu has a number of features in common with alkalic systems elsewhere, including quartz-poor, carbonate-rich veins and alteration, abundant and varied telluride minerals, high gold grades, and Pt-Pd occurrences. We suggest these characteristics are a result of relatively high temperature (250–300 °C) fluids and immiscible semi-metal melts fluxing into the shallow epithermal environment. High pH fluids lead to quartz-poor alteration, but mildly acidic conditions dominate in areas of high fluid flux, where the lower pH causes precipitation of tellurides with quartz. Boiling of the fluids produces zonation of tellurides with depth but leaves relatively subtle textural evidence compared to boiling in most epithermal systems, in common with other quartz poor, carbonate-rich alkalic epithermal deposits around the world
    corecore